Improved Oral Bioavailability Using a Solid Self-Microemulsifying Drug Delivery System Containing a Multicomponent Mixture Extracted from Salvia miltiorrhiza.
نویسندگان
چکیده
The active ingredients of salvia (dried root of Salvia miltiorrhiza) include both lipophilic (e.g., tanshinone IIA, tanshinone I, cryptotanshinone and dihydrotanshinone I) and hydrophilic (e.g., danshensu and salvianolic acid B) constituents. The low oral bioavailability of these constituents may limit their efficacy. A solid self-microemulsifying drug delivery system (S-SMEDDS) was developed to load the various active constituents of salvia into a single drug delivery system and improve their oral bioavailability. A prototype SMEDDS was designed using solubility studies and phase diagram construction, and characterized by self-emulsification performance, stability, morphology, droplet size, polydispersity index and zeta potential. Furthermore, the S-SMEDDS was prepared by dispersing liquid SMEDDS containing liposoluble extract into a solution containing aqueous extract and hydrophilic polymer, and then freeze-drying. In vitro release of tanshinone IIA, salvianolic acid B, cryptotanshinone and danshensu from the S-SMEDDS was examined, showing approximately 60%-80% of each active component was released from the S-SMEDDS in vitro within 20 min. In vivo bioavailability of these four constituents indicated that the S-SMEDDS showed superior in vivo oral absorption to a drug suspension after oral administration in rats. It can be concluded that the novel S-SMEDDS developed in this study increased the dissolution rate and improved the oral bioavailability of both lipophilic and hydrophilic constituents of salvia. Thus, the S-SMEDDS can be regarded as a promising new method by which to deliver salvia extract, and potentially other multicomponent drugs, by the oral route.
منابع مشابه
Formulation design of self-microemulsifying drug delivery systems for improved oral bioavailability of celecoxib.
Celecoxib is a hydrophobic and highly permeable drug belonging to class II of biopharmaceutics classification system. Low aqueous solubility of celecoxib leads to high variability in absorption after oral administration. Cohesiveness, low bulk density and compressibility, and poor flow properties of celecoxib impart complications in it's processing into solid dosage forms. To improve the solubi...
متن کاملPreparation and in Vivo Evaluation of a Dutasteride-Loaded Solid-Supersaturatable Self-Microemulsifying Drug Delivery System
The purpose of this study was to prepare a dutasteride-loaded solid-supersaturatable self-microemulsifying drug delivery system (SMEDDS) using hydrophilic additives with high oral bioavailability, and to determine if there was a correlation between the in vitro dissolution data and the in vivo pharmacokinetic parameters of this delivery system in rats. A dutasteride-loaded solid-supersaturatabl...
متن کاملSolid formulation of a supersaturable self-microemulsifying drug delivery system for valsartan with improved dissolution and bioavailability
In order to improve the dissolution and oral bioavailability of valsartan (VST), and reduce the required volume for treatment, we previously formulated a supersaturable self-microemulsifying drug delivery system (SuSMEDDS) composed of VST (80 mg), Capmul® MCM (13.2 mg), Tween® 80 (59.2 mg), Transcutol® P (59.2 mg), and Poloxamer 407 (13.2 mg). In the present study, by using Florite® PS-10 (119....
متن کاملEvaluation of Carbamazepine (CBZ) Supersaturatable Self-Microemulsifying (S-SMEDDS) Formulation In-vitro and In-vivo
The supersaturatable self-microemulsifying drug delivery system (S-SMEDDS) represents a new thermodynamically stable formulation approach wherein it is designed to contain a reduced amount of surfactant and a water-soluble polymer (precipitation inhibitor or supersaturated promoter) to prevent precipitation of the drug by generating and maintaining a supersaturated state in-vivo. The supersatur...
متن کاملEvaluation of Carbamazepine (CBZ) Supersaturatable Self-Microemulsifying (S-SMEDDS) Formulation In-vitro and In-vivo
The supersaturatable self-microemulsifying drug delivery system (S-SMEDDS) represents a new thermodynamically stable formulation approach wherein it is designed to contain a reduced amount of surfactant and a water-soluble polymer (precipitation inhibitor or supersaturated promoter) to prevent precipitation of the drug by generating and maintaining a supersaturated state in-vivo. The supersatur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 21 4 شماره
صفحات -
تاریخ انتشار 2016